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Abstract. We address a class of particularly hard-to-solve combinatorial optimization problems,
namely that of multicommodity network optimization when the link cost functions are discontinu-
ous step increasing. Unlike usual approaches consisting in the development of relaxations for such
problems (in an equivalent form of a large scale mixed integer linear programming problem) in order
to derive lower bounds, our d.c.(difference of convex functions) approach deals with the original
continuous version and provides upper bounds. More precisely we approximate step increasing
functions as closely as desired by differences of polyhedral convex functions and then apply DCA
(difference of convex function algorithm) to the resulting approximate polyhedral d.c. programs.
Preliminary computational experiments are presented on a series of test problems with structures
similar to those encountered in telecommunication networks. They show that the d.c. approach and
DCA provide feasible multicommodity flows x∗ such that the relative differences between upper
bounds (computed by DCA) and simple lower bounds r := (f (x∗) − LB)/f (x∗) lies in the range
[4.2 %, 16.5 %] with an average of 11.5 %, where f is the cost function of the problem and LB is
a lower bound obtained by solving the linearized program (that is built from the original problem by
replacing step increasing cost functions with simple affine minorizations). It seems that for the first
time so good upper bounds have been obtained.
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1. Introduction

Minimum cost multicommodity network optimization problems are basic models
in the context of many applications such as: telecommunication networks, trans-
portation networks and traffic analysis, logistic, etc. Many such problems lead to
large-scale nonconvex or combinatorial optimization problems (see e.g. [4]). These
applications have risen many different solutions approaches (see [6, 28, 35]).
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In the design of packet-switched networks with high grade of service con-
straints, the design of the topology at lowest cost, the dimensioning of the links
to accept given demands between each pairs of nodes and the computation of
optimal routes with the smallest packet delay have been treated within a common
model, the Capacity and Flow Assignment problem (CFA). This problem can be
formulated as follows: given a basic topology and a requirement matrix, determine
the capacity and flow variables which satisfy the capacitated multicommodity flow
constraints and minimize the total design cost.

The difficulty in computing exact optimal solutions or good approximate solu-
tions (with guaranteed quality) depends very much on the structure and/or mathem-
atical properties of the cost functions on the links. The easiest known special case
is when all cost functions are linear (with nonnegative cost per unit flow) since this
reduces to shortest path computations. The case of separable convex cost functions
(whether differentiable or nonsmooth) may also be considered as a well-solved
class, by means of linearization and decomposition techniques (see [7, 36]).

The case of concave (differentiable) cost functions and the linear with fixed
costs case have also been studied by various authors (for a survey see [35] ). How-
ever no practically efficient exact algorithms are known for such problems, at least
for solving practical size instances, only good approximate solution algorithms
(without a priori quality guarantee) are available (see [1, 35]). One of the reasons
for this situation is the lack of lower bounds of reasonable quality to direct tree
search in branch and bound approaches (even in the linear with fixed cost case,
known lower bounds may be as poor as 40–60 % off the exact optimum value).

The (CFA) problem has been first considered by Gerla in his thesis [14] and the
early approaches used Kleinrock’s delay and linear design costs, allowing the ap-
plication of the Flow Deviation algorithm to solving the corresponding convex mul-
ticommodity flow problem (see [7]). Most proposed algorithms treat alternatively
the Capacity Assignment problem (CA) and the Flow Assignment problem (FA)
like in Gerla and Kleinrock [15] or in successive papers by Gavish and collaborat-
ors ([11, 12]). In [16], Gerla et al. proposed to embed the packet-switched network
into a given backbone facility network and they obtained local optimal solutions
to the nonconvex design and routing model. Lagrangian relaxation has been quite
often used to split the problem into separate design and routing ([3, 12, 41]). Gavish
[10] also introduced Augmented Lagrangians to generate tight lower bounds.

On the other hand, the literature on the (CA) problem (without routing costs or
delay bounds) is vast and still growing, for the problem is by itself NP-hard and
very important in practice. The explicit modelling of capacities inside a nonconvex
cost function has been proposed in the literature, mostly using a concave cost
which represents economies of scales [35]. Gabrel and Minoux showed recently
[8, 9] how generalized linear programming can generate good lower bounds for
the (CA) problem with step increasing cost functions (problem (P0) defined in
Subsection 2.1). More precisely, in order to get better lower bounds, they proposed
a relaxation of an equivalent mixed integer linear program (problem (P2) defined
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in Subsection 2.3) in terms of a large scale LP model, the exact solution of which
may be obtained by combining both column generation and constraint generation.
Computational results given in [9] show that, in 90 % of the examples treated,
their relaxation is always better: the improvement over the optimal solution to the
convexified problem lies in the range 5–25 % (the average improvement is equal to
13.3 %).

Mahey and Luna [32, 33] have studied a continuous version of the (CFA) prob-
lem where the design cost is combined with an average delay measure to yield a
nonconvex objective function coupled with the multicommodity flow. This prob-
lem, called the Network Expansion Problem (NEP), can be reformulated as mixed
integer programs with the convex objective function where the boolean variables
represent the choice of capacities among a given set of facilities.

Our approach to multicommodity flow problems with step increasing cost func-
tions (P0) in their continuous framework is based on the d.c. programming and
DCA. More precisely, step increasing functions will be approximated as closely
as desired by differences of polyhedral convex functions and DCA can then be
applied to the approximated polyhedral d.c. program. D.c. programming and DCA
were extensively developed by Pham Dinh Tao and Le Thi Hoai An during the
last years for solving nonconvex and nonsmooth programming problems (see [23–
27, 37, 38] and references therein). Despite its local character, in practice DCA
has been successfully applied to many and various nonconvex optimization prob-
lems, especially for those in large scale setting, because found local solutions are
quite often global ones and DCA proved to be efficient with respect to standard
methods. Another important point to be pointed out is that unlike most proposed
algorithms in the literature (for nonconvex optimization problems) which compute
lower bounds via relaxation techniques, DCA provides upper bounds which are
quite often optimal values. This fact is crucial for the use of branch and bound tech-
niques since DCA may considerably reduce the number of branching and bounding
and so makes it possible to treat problems of real dimension.

Note that most real world optimization problems are d.c. programs, in particular,
the (CA), (FA) and (CFA) problems can be solved in the d.c. programming frame-
work. DCA is actually one of a few algorithms (in the convex analysis approach to
d.c. programming) which allows to solve large-scale d.c. programs.

Preliminary computational experiments are presented on a series of test prob-
lems with structures similar to those encountered in telecommunication networks.
They show that the d.c. approach and DCA provide feasible multicommodity flows
x∗ such that: r := (f (x∗) − LB)/f (x∗) lies in the range [4.2 %, 16.5 %] with
an average of 11.5 %, where f is the cost function of (P0) and LB is a lower
bound obtained by solving the linearized program (LP0) (that is (P0) in which the
step increasing cost functions fu are replaced by simple affine minorizations lu.
Evidently r may be better estimated with better estimations of lower bounds LB.
As far as we know that is the first time so good upper bounds have been obtained.
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The paper is organized as follows: the presentation of multicommodity network
optimization problems with step increasing cost functions, its combinatorial op-
timization problem and the equivalent mixed integer linear program are given in
Section 2 with relationships between their optimal solutions. Section 3 is devoted
to d.c. programming and DCA for general d.c. programs with a short background
indispensable for a good understanding of our approach. The DCA for solving mul-
ticommodity network optimization problems with step increasing cost functions is
described in Section 4. Finally computational results are reported in the last section.

2. Problems statements and formulations

The network structure is given as a non-directed graph G = (V ,U) where S is
the set of nodes and U is the set of (non-directed) edges. We denote |V | = m and
| U |= n.

The problem to be considered is to decide the amount of capacity xu � 0 to
install on each edge u of the network in order to

• satisfy a given set of multicommodity flow requirements: there are K source-
sink pairs, and for each k ∈ [1,K] a given requested flow value dk has to be
routed between the source node s(k) and the sink node t (k),

• satisfy upper bound constraints:

0 � xu � βu ∀u ∈ U,

• minimize the total cost of the network which, in terms of given individual link
cost functions fu(xu) (u = 1, ..., n) may be written as:

z =
∑
u∈U

fu(xu).

Minimum cost multicommodity flow problems have been extensively studied in
the special cases where the cost functions fu(xu) are linear [22], linear with fixed
cost or nonlinear but continuous or differentiable (see, e.g., [35]).

We are concerned here with the multicommodity network optimization problem
in the case of discontinuous step-increasing cost functions. To the best of our
knowledge, no systematic study has been carried out before the works in [8, 9]
to build relaxations of this problem and to solve relaxed nonconvex programming
problems.

The multicommodity network optimization problem with step increasing costs
function is in fact of combinatorial nature. We will give below two equivalent
formulations, as a minimization of z over a finite set of x = (xu)u∈U and as a
mixed integer linear programming problem.
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2.1. MULTICOMMODITY NETWORK OPTIMIZATION PROBLEMS WITH STEP

INCREASING COST FUNCTIONS

This problem is formulated as

(P0)

 minf (x) =
∑
u∈U

fu(xu)

x ∈ X ∩ D

in which, for u ∈ U , the individual link cost function fu(xu) is defined on [0, βu]
by

fu(xu) =

γ 0
u = 0 if xu = 0 i = 0
γ i
u if vi−1

u < xu � viu i = 1, .., q(u) − 1
γ
q(u)
u if vq(u)−1

u < xu � v
q(u)
u = βu i = q(u)

where

− Vu = {0 = v0
u < v1

u < ... < v
q(u)
u = βu} is a finite set of values representing

the discontinuity points of the fu(xu) functions and 0 = γ 0
u < γ 1

u < ... <

γ
q(u)
u . The function fu(xu) has exactly q(u) steps increasing.

− For a given set of commodity flow requirements defined by a list of source-
sink pairs s(k), t (k) (k = 1, ..., K) and a list of requirements dk (amount of
the kth flow to be routed between s(k) and t (k), we denote by X ⊂ R

n the
set of all feasible multicommodity flows. Thus x = (xu)u∈U belongs to X if
and only if a feasible multicommodity flow exists when, on each edge u ∈ U,

the total capacity installed is xu.
− D = {x = (xu)u∈U : xu ∈ [0, βu] ∀u ∈ U }.

Let us now describe formally the feasible multicommodity flow polyhedron X
within the directed framework. We first define the corresponding directed multi-
graph G = (V, {U+,U−}) from the non-directed graph G = (V, U) by duplicating
each edge u = (s, t) ∈ U in two arcs u+ = (s, t) ∈ U+ and u− = (t, s) ∈ U−. It
follows that

(xu)u∈U = (xu+)u+∈U+ + (xu− )u−∈U−,

with

xu+ =
K∑
k=1

ξ ku+, xu− =
K∑
k=1

ξ ku−,

where(
ξ 1
u+
ξ 1
u−

)
u∈U

. . .

(
ξK
u+
ξK
u−

)
u∈U
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are K positive simple flows circulating simultaneously on the directed multigraph
G = (V, {U+,U−}).

For k = 1, ..,K, ξk ∈ R
2n+ is a feasible simple flow for a given requested flow

value dk ∈ R+ to be rooted between the source node s(k) and t (k). In other
words, ξ k is solution of the familiar flow conservation equations

Aξ k = dkδ
k,

where A is the node-arc incidence matrix of the directed multigraph G = (V, {U+,
U−}) and δk(∈ R

n) is the requirement vector taking 1 at s(k), −1 at t (k) and 0
elsewhere. The matrix A can be written in the form [A+A−] where the submatrix
A+ (resp. A−), is the node-arc incidence matrix of the directed graph (V, U+),
(resp. (V, U−)). Since A+ = −A−, we denote the former matrix by A for simpli-
city. The linear representation as a plyhedral convex set of the set X of all feasible
multicommodity flows x is given below in the node-arc formulation

Aξ k = dkδ
k k = 1, ..,K

x =
K∑
k=1

(ξ k+ + ξ k−)

ξ k � 0

,

where

ξ k = (ξ ku)u∈U =
(
ξ k
u+
ξ k
u−

)
u∈U

=
(
ξ k+
ξ k−

)
.

That system of linear constraints has the usual block diagonal structure
A

..

.. A
..

A
II .. II .. II −In





ξ 1

:

ξ i

:
ξK

x


=


d1δ

1

..

diδ
i

..

dKδ
K

0

 , (1)

where A = [ A −A ], II = [In In], In: the n× n identity matrix.
Another representation of the polyhedron X involving the x variables only is given
by:

For any λ = (λ1, ..., λn) ∈ R
n+, let θ(λ) denote the quantity

θ(λ) =
K∑
k=1

dk × l∗k (λ)

where l∗k (λ) is the length of the shortest chain joining s(k) and t (k) in G, when
each edge u ∈ U is given length λu � 0 (note that θ(λ) may be interpreted as the
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value of the minimum cost multicommodity flow solution when, on each edge u,
the cost function fu(xu) is linear of the form λuxu).

Then x = (xu)u∈U belongs to X if and only if, for all λ = (λ1, ..., λn) ∈ R
n+,

we have (see e.g. [17])∑
u∈U

λuxu � θ(λ).

This result is generally used in relaxation techniques for computing lower bounds
of minimum cost multicommodity flow problems.

2.2. DISCRETE MULTICOMMODITY NETWORK OPTIMIZATION PROBLEMS

WITH STEP INCREASING COST FUNCTIONS

The ‘continuous’ multicommodity network optimization with step increasing cost
functions (P0) can be considered as being of discrete nature, thanks to the following
result [8, 9]:

PROPOSITION 1. Problem (P0) is equivalent to

(P1)


minf (x) =

∑
u∈U

fu(xu)

x ∈ X
xu ∈ Vu ∀u ∈ U

where Vu = {0 = v0
u < v1

u < ... < v
q(u)
u = βu}, ∀u ∈ U.

Proof. (P0) is a relaxation of (P1) since Vu ⊂ U and v
q(u)
u = βu, ∀u ∈ U , so it

is enough to prove that any solution x0 = (x0
u)u∈U may be converted into a solution

to (P1) having the same objective function value.
For any u ∈ U we have either x0

u = 0 or there is i ∈ [1, q(u)] such that
vi−1
u < x0

u � viu and fu(x
0
u) = fu(v

i
u).

It follows that the corresponding x1 = (x1
u)u∈U , defined by x1

u = x0
u in the first

case and viu in the second case, belongs to X (since x1 � x0) and f (x1) = f (x0).

Hence x1 is a solution to (P1).

2.3. THE LARGE SCALE MIXED INTEGER LINEAR PROGRAMMING

REFORMULATION

In order to globalize DCA it is important to present below the usual reformulation
of problem (P1) as a large scale mixed integer linear programming problem (P2)
(see [9]). These authors proposed an alternative relaxation of (P2) in terms of a
large scale LP model, which can be solved by a generalized linear programming
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approach combining both column generation and constraint generation. The result-
ing optimal solutions provide lower bounds to the exact solutions to the minimum
cost multicommodity flow problem to be solved.

Consider any node i ∈ V and ri the amount of flow requirements to be routed
between node i to all other nodes in the network. So

ri =
∑
k∈Ki

dk

where

Ki = {k ∈ [1,K] : s(k) = i or t (k) = i}.
Clearly, a necessary condition for x = (xu)u∈U to be feasible solution to (P1) is

that ∑
u∈w(i)

xu � ri,

where ω(i) denotes the subset of edges having i as an endpoint.
Also, for t := 1, ..., δ(i) = |w (i)| (degree of node i), define u = αi(t) as being

the index number of the t th edge of w(i). The finiteness of the sets Vu, u ∈ U,

implies that of the solution set of the system

(I)


∑
u∈w(i)

xu � ri

xu ∈ Vu ∀u ∈ w(i)

.

Each solution may be described as a vector with δ(i) components.
Denote by Ai the matrix, the columns of which are the various vectors solving

(I). It has δ(i) rows indexed by t = 1, ..., δ(i), and P(i) columns, indexed by
p = 1, ..., P (i). Ai

t,p denotes the entry of Ai in the t th row and the pth column.
From the definition Ai

t,p ∈ Vu, where u = αi(t).

Associate with each column p of the matrix Ai (p ∈ [1, ..., P (i)]) a cost γ i
p =∑δ(i)

t=1 fαi(t) (A
i
t,p) (this is the part of the objective function value corresponding to

the edges in w(i) only, when the capacities installed on those edges are the ones
appearing as the components of the pth column of Ai).

Now, associated with each column p of the matrix Ai , we consider a 0 − 1
decision variable yip expressing the selection (yip = 1) or not ( yip = 0) of the pth

column of Ai to be part of the solution. The corresponding cost of selecting one
and only one of the column vectors of Ai to be part of the solution is

P(i)∑
p=1

γ i
py

i
p,
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the binary variables being constrained to satisfy

P(i)∑
p=1

yip = 1.

Let x = (x1, x2, ..., xn) be any solution of (P1). Then clearly the subvector of
x formed by the components xu with u ∈ w(i) satisfies (I). So there exists a 0 − 1
yi vector, denoted by yi , such that

Aiyi =


xαi(1)
xαi (2)
.

.

.

xαi (δ(i))

 (2)

and eT yi = 1 (e denotes the vector of all ones of appropriate dimension, here
P(i)). The linear system (2) can be more conviently written as Aiyi − Bix = 0
where Bi is the (δ (i)× n) 0 − 1 matrix constructed as follows: for t ∈ [1, δ (i)] its
only nonzero coefficients in row t has value 1 and belongs to column αi(t).

Now, all the construction above may be carried out for every node i = 1, ..., m
of the network in turn. It follows that, if x is any solution to (P1), then there exists
0 − 1 vectors yi (i = 1, ..., m) satisfying the following set of constraints

(II)


x ∈ X and
Aiyi − Bix = 0
eT yi = 1
yi ∈ {0, 1}P(i)

(∀i = 1, ..., m)
.

Note that the requirement x ∈ V1 × V2 × ... × Vn would be redundant in (II).
Consider then the following mixed integer linear programming problem

(P2)



min 1
2

m∑
i=1

P(i)∑
p=1

γ i
py

i
p

Aiyi − Bix = 0 (∗)
eT yi = 1, (∗∗) ∀i = 1, . . . , m
yi ∈ {0, 1}P(i),
x ∈ X.

PROPOSITION 2. ([9]) (P1) and (P2) are equivalent in the following sense:
(i) If x is any solution to (P1) and yi (i = 1, ..., m) the associated vectors

satisfying (II) then x and yi (i = 1, ..., m) form a solution to (P2).

(ii) If x and yi (i = 1, ..., m) form a solution to (P2) then x is a solution to (P1)
(iii) (P1) and (P2) have the same optimal value.



214 LE THI HOAI AN AND PHAM DINH TAO

The number of y variables in (P2) depends on the number of nodes (m � 50
is typically in problems of practical size), the node degrees (typically an average
of 5) and the number of discontinuity points on each edge cost function (typically
an average of 5). Therefore, an estimate of the typical number of columns in (P2)
is m × 55. On the other hand the total number of constraints (*)–(**) is limited to
m+ 2n.

Another aspect of the problem is that, if we want an accurate linear description
of the feasible multicommodity flow polyhedron X, a sufficient number of linear
constraints of the x variables will have to be explicitly brought into the model.
Therefore, for examples of practical sizes (m � 50 nodes, n � 80 edges, say) we
can expect (P2) to be a large scale mixed integer linear program for which there
is no hope of getting guaranteed exact optimal solutions with the best currently
available techniques, as claimed Gabrel and Minoux in [8, 9].

Our d.c. approach is directly applied to Problem (P0) via an approximation
of the individual link cost functions fu(xu) by differences of convex polyhedral
functions. The resulting polyhedral d.c. program will be solved by DCA (Section
4). In the next section we shall present the general framework of d.c. programming
and DCA.

3. D.C. Programming and DCA

Here we summarize the material needed for an easy understanding of d.c. program-
ming and DCA which will be used to solve the minimum cost multicommodity
flow problem (P0). Our working space is X = R

n equipped with the canonical
inner product 〈·, ·〉 and the corresponding Euclidean norm ‖ · ‖, thus the dual space
Y of X can be identified with X itself. We follow [39] for definitions of usual tools
of modern convex analysis where functions could take the infinite values ±∞. A
function θ : X → IR ∪ {±∞} is said to be proper if it takes nowhere the value −∞
and is not identically equal to +∞. The set of all lower semicontinuous proper
convex functions on X is denoted -0(X). For g ∈ -0(X), the conjugate function g∗
of g is a function belonging to -0(Y) and defined by

g∗(y) = sup{〈x, y〉 − g(x) : x ∈ X}
and we have g∗∗ = g.

Let g ∈ -0(X) and let x0 ∈ dom g and ε > 0, then ∂εg(x
0) stands for the ε−

subdifferential of g at x0 and is given by

∂εg(x
0) = {y0 ∈ Y : g(x) � g(x0) + 〈x − x0, y0〉 − ε,∀x ∈ X}

while ∂g(x0) corresponding to ε = 0, stands for the usual (or exact) subdifferential
of g at x0. Recall that

y0 ∈ ∂g(x0) ⇐⇒ x0 ∈ ∂g∗(y0) ⇐⇒ 〈x0, y0〉 = g(x0)+ g∗(y0).

One says that g is subdifferentiable at x0 if ∂g(x0) is nonempty.



MULTICOMMODITY NETWORK OPTIMIZATION PROBLEMS 215

Also, the indicator function χC of a closed convex set is defined by χC(x) = 0
if x ∈ C,+∞ otherwise.

A function θ ∈ -0(X) is said to be polyhedral convex if [39]

θ(x) = max{〈ai, x〉 − αi : i = 1, . . . , m} + χS(x), ∀x ∈ X,

where ai ∈ Y, αi ∈ R for i = 1, . . . , m and S is a nonempty polyhedral convex set
in X. Recall that [39] the conjugate of a polyhedral convex function is polyhedral
convexe and the sum of polyhedral convex functions is polyhedral convex too.

Let ρ � 0 and C be a convex subset of X. One says that a function θ : C −→
R ∪ {+∞} is ρ-convex if

θ[λx + (1 − λ)x′] � λθ(x)+ (1 − λ)θ(x′)

− λ(1 − λ)

2
ρ‖x − x′‖2,∀λ ∈]0, 1[,∀x, x′ ∈ C.

It amounts to saying that θ − (ρ/2)‖ · ‖2 is convex on C. The modulus of strong
convexity of θ on C, denoted by ρ(θ, C) or ρ(θ) if C = X, is given by:

ρ(θ, C) = sup{ρ � 0 : θ − (ρ/2)‖ · ‖2 is convex on C}. (3)

Clearly, θ is convex on C if and only if ρ(θ, C) = 0. One says that θ is strongly
convex on C if ρ(θ, C) > 0.

A general d.c. program is of the following form with g, h ∈ -0(X)

(Pdc)

{
α = inf f (x) := g(x) − h(x)

s.t. x ∈ X,

where we adopt the convention +∞− (+∞) = +∞ to avoid ambiguity. One says
that g − h is a d.c. decomposition (or d.c. representation) of f , and g, h are its
convex d.c. components. If g and h are finite on X, then f = g − h is said to be
finite d.c. function on X.

Note that the finiteness of α merely implies that

dom g ⊂ dom h and dom h∗ ⊂ dom g∗. (4)

Such inclusions will be assumed throughout the paper.
A point x∗ is said to be a local minimizer of g−h if g(x∗)−h(x∗) is finite (i.e.,

x∗ ∈ dom g ∩ dom h) and there exists a neighbourhood U of x∗ such that

g(x∗)− h(x∗) � g(x) − h(x), ∀x ∈ U. (5)

Under the convention +∞ − (+∞) = +∞, the property (5) is equivalent to
g(x∗) − h(x∗) � g(x) − h(x), ∀x ∈ U ∩ dom g.

A point x∗ is said to be a critical point of g − h if ∂g(x∗) ∩ ∂h(x∗) �= ∅.
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The d.c. duality, (due to Toland [42], who generalized in a very elegant and
natural way the early works of Pham Dinh T. on convex maximization program-
ming), associates the d.c. program (Pdc) with the following one called its dual d.c.
program

(Ddc)

{
α = inf h∗(y)− g∗(y)
s.t. y ∈ Y

with the help of the functional conjugate notion and states relationships between
them. More precisely, as a sort of getting to the root of convex functions (namely
a convex function θ ∈ -0(X) is characterized as the pointwise supremum of a
collection of affine minorizations, in particular there holds the following expression

θ(x) = sup{〈x, y〉 − θ∗(y) : y ∈ Y}, ∀x ∈ X (6)

that will appear in the concept of our DCA again), the d.c. duality is built by
replacing, in problem (Pdc), the function h with its corresponding expression of
(6).

If at least one of convex d.c. components is polyhedral convex, then Problem
(Pdc) is called a polyhedral d.c. program. In this case the dual program (Ddc) is
also a polyhedral d.c. program.. The special class of polyhedral d.c. programs,
which plays a key role in nonconvex optimization, possesses worthy properties,
from both theoretical and computational viewpoints, as necessary and sufficient
local optimality conditions, and finite convergence for DCA (see, e.g., [23, 37, 38]).

Thanks to a symmetry in the d.c. duality (the bidual d.c. program is exactly
the primal one) and the d.c. duality transportation of global minimizers ([23, 37,
38]), solving a d.c. program implies solving the dual one and vice versa. It may be
useful if one of them is easier to solve than the other. The equality of the optimal
value in the primal and dual programs can be easily translated (with the help of ε-
subdifferential of the d.c. components) in global optimality conditions, namely x∗
is a global solution to (Pdc) if and only if

∂εh(x
∗) ⊂ ∂εg(x

∗) ∀ε � 0.

Unfortunately as we should expect, these conditions are rather difficult to use
for devising solution methods to d.c. programs.

Local d.c. optimality conditions constitute (with the d.c. duality) the basis of the
DCA. In general, it is not easy to state them as in global d.c. optimality and there
have been found very few properties which are useful in practice [23, 37, 38].

REMARK 1. Problem (Pdc) is a false d.c. program if the function f = g − h is
actually convex on X. For example the problem of minimizing a convex function
f on X can be (equivalently) casted in the d.c. framework as that of minimizing a
d.c. function g − h, where g = f+ θ , h = θ and θ is a finite convex function on
X. In such case it is proved that the subdifferential inclusion ∂h(x∗) ⊂ ∂g(x∗) is
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equivalent to 0 ∈ ∂f (x∗), i.e. x∗ is a solution to the problem being considered. We
indicate in [23, 37, 38] other ways of generating equivalent d.c. programs by using
regularization techniques. These features proper to the d.c. framework are crucial
in the use of the DCA for solving nonconvex problems (or false d.c. problems).
There are as many DCA as there are d.c. decompositions.

The DCA for general d.c. programs.
The DCA consists in the construction of the two sequences {xk} ⊂ X and {yk} ⊂

Y (of attempting candidates for being primal and dual solutions respectively) that
we improve at each iteration (the sequences {g(xk)−h(xk)} and {h∗(yk)−g∗(yk)}
are decreasing) in an appropriate way such that their respective limits x∞ and
y∞satisfy the local optimality condition

∂h(x∞) ⊂ ∂g(x∞) and ∂g∗(y∞) ⊂ ∂h∗(y∞), i.e. (x∞, y∞) ∈ Pl × Dl ,

or are critical points of g − h and h∗ − g∗ respectively.
These sequences are generated as follows: xk+1 (resp. yk) is a solution to the

convex program (Pk) (resp. (Dk)) defined by

(Pk)

{
inf {g(x) − [h(xk)+ 〈x − xk, yk〉]}
s.t. x ∈ X,

(Dk)

{
inf {h∗(y) − [g∗(yk−1)+ 〈xk, y − yk−1〉]}
s.t. y ∈ Y.

In view of the relation: (Pk) (resp. (Dk)) is obtained from (Pdc) (resp. (Ddc)) by
replacing h (resp. g∗) with its affine minorization defined by yk ∈ ∂h(xk) (resp.
xk ∈ ∂g∗(yk−1)), the DCA yields the next scheme:

yk ∈ ∂h(xk); xk+1 ∈ ∂g∗(yk). (7)

It corresponds actually to the simplified DCA (which will be shortly called DCA
through the paper for simplicity) where xk+1 (resp. yk) is arbitrarily chosen in
∂g∗(yk) (resp. ∂h(xk). In the complete form of DCA, we impose the following
natural choice

xk+1 ∈ arg min{g(x)− h(x) : x ∈ ∂g∗(yk)} (8)

and

yk ∈ arg min{h∗(y) − g∗(y) : y ∈ ∂h(xk)} (9)

Problems (8) and (9) are equivalent to convex maximization problems (10) and
(11) respectively

xk+1 ∈ arg min{〈x, yk〉 − h(x) : x ∈ ∂g∗(yk)} (10)
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yk ∈ arg min{〈xk, y〉 − g∗(y) : y ∈ ∂h(xk)}. (11)

The complete DCA ensures that (x∞, y∞) ∈ Pl × Dl . It can be viewed as a sort
of decomposition approach of the primal and dual problems (Pdc), (Ddc). From
a practical point of view, although Problems (8) and (9) are simpler than (Pdc),
(Ddc) (we work in ∂h(xk+1) and ∂g∗(yk) with convex maximization problems),
they remain nonconvex programs and thus are still hard to solve. In practice, except
the cases where the convex maximization problems (10) and (11) are easy to treat,
one generally uses the simplified DCA to solve d.c. programs.

The DCA was introduced as an extension of the subgradient algorithms (for
convex maximization programming) to d.c. programming by Pham Dinh Tao in
1986. But this field has been really developed from 1994 only with joint works
by Le Thi Hoai An and Pham Dinh Tao (see [23], [37], [38] and the references
therein) for solving nonsmooth nonconvex optimization problems. To our know-
ledge, DCA is actually one of a few algorithms (in the convex analysis approach to
d.c. programming) which allows to solve large-scale d.c. programs.

It had been proved in Pham Dinh Tao and Le Thi Hoai An [23, 37, 38] that, for
the simplified DCA, we have

(i) The sequences {g(xk)−h(xk)} and {h∗(yk)−g∗(yk)} are decreasing and
• g(xk+1)−h(xk+1) = g(xk)−h(xk) if and only if yk ∈ ∂g(xk)∩∂h(xk),

yk ∈ ∂g(xk+1) ∩ ∂h(xk+1) and [ρ(g)+ ρ(h)]‖xk+1 − xk‖ = 0.
• h∗(yk+1)−g∗(yk+1) = h∗(yk)−g∗(yk) if and only if xk+1 ∈ ∂g∗(yk)∩

∂h∗(yk), xk+1 ∈ ∂g∗(yk+1) ∩ ∂h∗(yk+1) and [ρ(g∗) + ρ(h∗)]‖yk+1 −
yk‖ = 0.

In such a case DCA terminates at the kth iteration.
(ii) If ρ(g) + ρ(h) > 0 (resp. ρ(g∗) + ρ(h∗) > 0), then the series {‖xk+1 −

xk‖2} (resp. {‖yk+1 − yk‖2}) converges.
(iii) If the optimal value α of problem (Pdc) is finite and the sequences {xk} and

{yk} are bounded then every limit point x∞ (resp. y∞) of the sequence {xk}
(resp. {yk}) is a critical point of g − h (resp. h∗ − g∗).

(iv) DCA has a linear convergence for general d.c. programs.
(v) In polyhedral d.c. programs, the sequences DCA {xk} and {yk} contain

finitely many elements and DCA has a finite convergence.
We have the same results for the complete DCA, except that in (i) (resp. (iii))

we must add the following property:
∂h(xk) ⊂ ∂g(xk) and ∂g∗(yk) ⊂ ∂h∗(yk) (resp. ∂h(x∞) ⊂ ∂g(x∞) and

∂g∗(y∞) ⊂ ∂h∗(y∞)).
The above description of DCA does not really reveal the main features of this

approach which could partly explain the qualities (running time, robustness, sta-
bility, rate of convergence and globality of sought solutions) of DCA from the
computational viewpoint. For a deeper insight into DCA the reader is referred to
[26].
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REMARK 2. So there are as many DCA as there are d.c. decompositions and it is
of particular interest to study various equivalent d.c. forms for the primal and dual
d.c. problems. It is worth mentioning, for instance, that by using conjointly suitable
d.c. decompositions of convex functions and proximal regularization techniques
we can obtain the proximal point algorithm and the Goldstein-Levitin-Polyak sub-
gradient method (in convex programming) as special cases of DCA.

The choice of the d.c. decomposition of the objective function in a d.c. program
and the initial point for DCA are open questions to be studied for the specific struc-
ture of the problem being considered. In practice, for solving a given d.c. program,
we try to choose g and h such that sequences {xk} and {yk} can be easily calculated,
i.e. either they are in explicit form or their computations are inexpensive.

We shall apply all these d.c. enhancement features to solve multicommodity
network optimization with step increasing cost functions (P0) which are formu-
lated as d.c. programs.

4. Approximate polyhedral d. c. programs to (P0) and solutions by DCA

Since the individual link cost functions fu(xu) are discontinuous on [0, βu], the
objective function f (x) is not a d.c. function on X = R

n. There are many ways
to approximate the function f by d.c. functions on X to build approximate d.c.
programs (see [25] and Nguyen’s PhD Thesis [30] where our d.c. models have
been used). According to the special structure of fu(xu) and DCA’s good beha-
viour in polyhedral d.c. programs [23, 26, 37, 38]), we have chosen polyhedral
d.c. functions to approximate f .

4.1. APPROXIMATE POLYHEDRAL D.C. FUNCTIONS TO THE STEP INCREASING

COST FUNCTIONS fu

Beside the discontinuity points 0 = v0
u < v1

u < ... < v
q(u)
u = βu we introduce the

following ones ṽiu, i = 0, ..., q(u) − 1 such that

v0
u < ṽ0

u < ṽ1
u < v1

u < ... < ṽq(u)−1
u < vq(u)−1

u < vq(u)u

and max {̃v0
u−v0

u, v
i
u− ṽiu : i = 1, ..., q(u)−1} � η, a positive number sufficiently

small, and the associated (finite) polyhedral convex functions on R, Li
u(xu), i =

0, ..., q(u) :

− L0
u is constantly equal to γ 0

u on
]−∞, v0

u

]
, affine on

[
γ 0
u ,+∞[

such that
L0
u(v

0
u) = γ 0

u and L0
u(̃v

0
u) = γ 1

u (with slope c0
u )

− Li
u is constantly equal to γ i

u on
]−∞, ṽiu

]
, affine on

[̃
viu,+∞[

such that Li
u(̃v

i
u)= γ i

u and Li
u(v

i
u) = γ i+1

u (with slope ciu) for i = 1, .., q(u) − 1,

− L
q(u)
u (xu) = γ

q(u)
u for u ∈ IR.
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Consider now the piecewise linear function Fu(xu), for u ∈ U , defined on R by

Fu(xu) =


L0
u(xu) if xu � ṽ0

u

L1
u(xu) if ṽ0

u � xu � v1
u

Li
u(xu) if vi−1

u � xu � viu, i = 2, ..., q(u) − 1
L
q(u)
u (xu) if vq(u)−1

u � xu

which will be used to approximate the function fu(xu).
Being the pointwise infimum of the finite collection of polyhedral convex func-

tions Li
u, i = 1, ..., q(u),

Fu = min{Li
u : i = 1, ..., q(u)}

the function Fu is a polyhedral d.c. function with the following d.c. decomposition

Fu = Gu −Hu

where Gu and Hu are (finite) polyhedral convex functions on R defined by

Gu :=
q(u)∑
q=0

Li
u, Hu := max

i=0,...,q(u)

 q(u)∑
j=0,j �=i

Li
u

 . (12)

In order to simplify computations in DCA for solving the approximate poly-
hedral d.c. program (Pdc) we will express the functions Gu and Hu as pointwise
supremum of a finite collection of affine functions. A simple calculation gives the
following results: G(u)(xu) =



q(u)∑
i=0

γ i
u if xu � v0

u

c0
uxu +

q(u)∑
i=0

γ i
u if v0

u � xu � ṽ1
u i−1∑

j=0

cju

 xu +
q(u)∑

i=0

γ i
u −

i−1∑
j=1

cjuṽ
j
u

 if ṽi−1
u � xu � ṽiu,

i = 2, ..., q(u) − 1q(u)−1∑
j=0

cju

 xu +
q(u)∑

i=0

γ i
u −

q(u)−1∑
j=1

cjuṽ
j
u

 if xu � ṽ
q(u)−1
u

,
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and Hu(xu) =

q(u)∑
i=0

γ i
u if xu � ṽ0

u

c0
uxu +

q(u)∑
i=0

γ i
u − c0

uṽ
0
u if ṽ0

u � xu � v1
u i−1∑

j=0

cju

 xu +
q(u)∑

i=0

γ i
u − c0

uṽ
0
u −

i−1∑
j=1

cjuv
j
u

 if vi−1
u � xu � viu,

i = 2, ..., q(u) − 1q(u)−1∑
j=0

cju

 xu +
q(u)∑

i=0

γ i
u − c0

uṽ
0
u −

q(u)−1∑
j=1

cjuv
j
u

 if xu � v
q(u)−1
u , i = q(u)

.

It implies that

Gu(xu) = max{aiuxu + biu : i = 0, ..., q(u)} ∀xu ∈ R (13)

where

aiu =


0 if i = 0
i−1∑
j=0

cju if i = 1..., q(u)

and

biu =



q(u)∑
i=0

γ i
u if i = 0, 1

q(u)∑
i=0

γ i
u −

i−1∑
j=1

cjuṽ
j
u if i = 2, ..., q(u)

.

Likewise

Hu(xu) = max{̃aiuxu + b̃iu : i = 0, ..., q(u)} ∀xu ∈ R (14)

where

ãiu =


0 if i = 0
i−1∑
j=0

cju if i = 1..., q(u) = aiu
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and

b̃iu =



q(u)∑
i=0

γ i
u if i = 0

q(u)∑
i=0

γ i
u −

i−1∑
j=1

cjuṽ
j
u if i = 1, ..., q(u).

4.2. APPROXIMATE POLYHEDRAL D.C. FUNCTION TO THE OBJECTIVE

FUNCTION f (x) OF (P0)

The approximate polyhedral d.c. functions Fu(xu) to the link cost functions fu(xu)
lead naturally to the following approximate function F(x) to the objective function
f (x) of (P0)

F(x) =
∑
u∈U

Fu(xu), ∀x = (xu) ∈ IRn.

In other words

F = G −H

where the functions G and H are (finite) polyhedral convex on R
n

G(x) :=
∑
u∈U

Gu(xu),H(x) :=
∑
u∈U

Hu(xu), ∀x = (xu) ∈ R
n.

It follows that F is a polyhedral d.c. function and the resulting approximate
polyhedral d.c. program to the multicommodity network optimization problem
with step increasing cost functions (P0) then is of the form

min{F(x) = G(x) −H(x) : x ∈ X ∩ D} (Pdc).

4.3. DCA FOR SOLVING THE APPROXIMATE POLYHEDRAL D.C. PROGRAM

(Pdc)

According to Section 3 and identifying the set of edges U with {1, ..., n} the DCA
applied to (Pdc) consists of constructing two sequences {xk} and {yk} such that

Given x0 ∈ IRn, xk −→ yk ∈ ∂H(xk) −→ xk+1 ∈ ∂(G+ χX∩D)
∗(yk)

(χX∩D denotes, as indicated in Section 3, the indicator function of the closed
convex set X ∩ D in R

n).
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4.3.1. Computing ∂H(x)

Since

H(x) :=
n∑

u=1

Hu(xu), ∀x = (xu) ∈ IRn,

we have [18, 19]

∂H(x) =
n∏

u=1

∂Hu(xu), ∀x = (xu) ∈ R
n. (15)

Instead of (12) the computation of ∂uHu(xu) is simpler using the expression of the
finite polyhedral convex function Hu(xu) as the pointwise supremum of the finite
collection of affine functions (14). Indeed we then have [18, 19]

∂Hu(xu) = co{̃aiu : i, ..., q(u), ãiuxu + b̃iu = Hu(xu)} (16)

(co stands for the convex hull).

4.3.2. Computing ∂(G+ χX∩D)
∗(yk)

Unlike the computation of ∂H(x) that is explicit, the computation of a subgradi-
ent of ∂(G + χX∩D)

∗(yk) amounts to minimizing the polyhedral convex function
G(x) − 〈x, y〉 over the compact convex X ∩ D

min{G(x) − 〈x, yk〉 : x ∈ X ∩ D} (CP )k+1.

More precisely ∂(G+ χX∩D)
∗(yk) is exactly the solution set of this problem.

Using the expression of the polyhedral convex function G(x) as the pointwise
supremum of the finite collection of affine functions (13), this problem becomes

min

{
n∑

u=1

max
i=0,...,q(u)

{(aiu − yku)xu + biu} : x ∈ X ∩ D

}
.

It is equivalent to the linear program

min


n∑

u=1

tu : (aiu − yku)xu + biu � tu, i = 0, ..., q(u), u = 1, ..., n,

x ∈ X ∩ D, t ∈ R
n

 (LP )k+1

in the following sense:
(i) If x∗ is an optimal solution to (CP )k+1 then (x∗, t∗), with t∗u = maxi=0,...,q(u)

{(aiu − yku)xu + biu} for u = 1, ..., n, is an optimal solution to (LP )k+1.

(ii) If (x∗, t∗) is an optimal solution to (LP )k+1 then t∗u = maxi=0,...,q(u){(aiu −
yku)xu + biu} for u = 1, ..., n and x∗ is an optimal solution to (CP )k+1.
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Problem (LP )k+1 can be written as

min
(t,x)

〈11, t〉[
Xk Tk

] ( x

t

)
� −Ib (∗)

x ∈ X ∩ D
t ∈ R

n

(LP)k+1

where

Xk Tk

︷ ︸︸ ︷
X

q(1)
1

..

X
q(u)
u

..

X
q(n)
n

︷ ︸︸ ︷
−11q(1)1

..

−11q(u)u

..

−11q(n)n





x1

:
xu
:
xn
t1
:
tu
:
tn



�

−Ib︷ ︸︸ ︷
−Ib1

..

−Ibu
..

−Ibn


,

Xq(u)
u = (a1

u − yku, .., a
q(u)
u − yku)

T , 11q(u)u = (1, .., 1)T , Ibu = (b1
u, .., b

q(u)
u )T .

Finally, using the matrix formulation (1) of the set of all feasible multicommod-
ity flows X, the set of linear constraints in (LP)k+1 has the block diagonal structure
with [mK + n + ∑n

u=1 q(u)] rows and [2n(K + 1)] columns



A
..

A
..

A
II .. II .. II −In

Xk Tk





ξ 1

.

.

ξ i

.

.

ξK

x

t



=
..

=
..

=
=
�



d1δ
1

..

diδ
i

..

dKδ
K

0
−Ib


. (17)
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4.4. DESCRIPTION OF THE DCA FOR SOLVING MULTICOMMODITY NETWORK

OPTIMIZATION PROBLEMS WITH STEP INCREASING COST FUNCTIONS

(P0)

We are now in a position to summarize the DCA for solving (P0). It is the DCA
applied to (Pdc) (Subsection 4.2) and can be described as follows:

DCA for solving (P0):
1. Initialization: Let x0 ∈ R

n be given and k � 0.
2. Compute yk by using (15), (16) and solve (LP)k+1 to compute xk+1.

3. Stopping rule: If f (xk) − f (xk+1) � ε , terminate. Otherwise increase k by
1 and return to 1.

4.5. RELAXED LINEAR PROBLEMS AND LOWER BOUNDS FOR (P0)

Consider the following convex optimization problem

min{(f + χX∩D)
∗∗(x) : x ∈ R

n}(P0)
∗∗

that is obtained by replacing the objective function (f + χX∩D) of (P0) with its
closed convex hull (f + χX∩D)

∗∗, (i.e. the pointwise supremum of all affine func-
tions majorized by f ) [39, 18]. It is known Problems (P0) and (P0)

∗∗ have the same
optimal value and the solution set of (P0) is contained in the solution set of (P0)

∗∗
[18]. But the function (f + χX∩D)

∗∗ is impractical and we should be content with
the closed convex hull of (f + χD) and the resulting convex optimization problem

min{(f + χD)
∗∗(x) : x ∈ X} (CP).

The following relations between (P0) and (CP) are straighforward
(i) (f + χD)

∗∗(x) � (f + χX∩D )
∗∗(x) � (f + χX∩D)(x) for all x ∈ R

n,
(ii) the optimal value of (CP) is a lower bound for (P0),
(iii) if (f + χD)

∗∗(x∗) = f (x∗) where x∗ is an optimal solution to (CP), then
(P0) and (CP) have the same optimal value and x solves (P0) if and only if
x solves (CP) and (f + χD)

∗∗(x) = f (x).
The tractability of (f + χD)

∗∗ comes from the separability of both the bound
constraints D = @u∈U [0, βu] and the total cost function f

f (x) =
∑
u∈U

fu(xu).

Indeed we have

(f + χD)(x) =
∑
u∈U

(fu + χ[0,βu])(xu)

and then the closed convex hull of (f + χD) can be expressed as

(f + χD)
∗∗(x) =

∑
u∈U

(fu + χ[0,βu])
∗∗(xu).
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The next result shows that (f + χD) is piecewie linear on D .

PROPOSITION 3. For each u ∈ U, the functions (fu+χ[0,βu])∗ and (fu+χ[0,βu])∗∗
are piecewise linear on R and on [0, βu], respectively, and we have

(i) (fu + χ[0,βu])∗(yu) = max{skuyu − ηku : k = 0, ..., 2q(u)} for yu ∈ R, where

sku =
{
vku if k = 0, ..., q(u) − 1
v
k−q(u)+1
u if k = q(u), ..., 2q(u),

ηku =
{
γ k
u if k = 0, ..., q(u) − 1
γ
k−q(u)+1
u if k = q(u), ..., 2q(u).

(ii) (fu + χ[0,βu])∗∗(xu) = min{∑2q(u)
k=0 λkuη

k
u : xu = ∑2q(u)

k=0 λkus
k
u, λ

k
u � 0, k =

0, ..., 2q(u), and
∑2q(u)

k=0 λku = 1}, for xu ∈ dom (fu + χ[0,βu])∗∗ = [0, βu] .
Proof. (i) is easily proved and (ii) is a simple consequence of (i) [18, 39].
The convexified problem

(CP)

 minf + χD)
∗∗ (x) =

∑
u∈U

( fu + χ[0,βu])
∗∗(xu)

x ∈ X

can then be equivalently converted in to the following linear program

min
∑
u∈U

τu (18)

2q(u)∑
k=0

λkuη
k
u � τu, for u ∈ U

2q(u)∑
k=0

λkus
k
u ∈ X,

λku � 0 for k = 0, ..., 2q(u) and
2q(u)∑
k=0

λku = 1

whose optimal value is a lower bound for the multicommodity network optimiza-
tion problem (P0).

Finally the linearized problems (LP0) obtained from (P0) by replacing each link
cost function fu with simple affine minorization lu of fu on [0, βu].

(LP0)

 min l (x) =
∑
u∈U

lu(xu)

x ∈ X ∩ D

could also be used to provide lower bounds to Problem of (P0). Since lu � (fu +
χ[0,βu])∗∗ on [0, βu],the optimal value of Problem (CP) is greater than optimal
values of (LP0) but the last problem is simpler to solve.
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5. Preliminary computational experiments and conclusions

The DCA described in Section 4 has been implemented and test on a series of
tests problems, typical of telecommunication networks, and derived from [8, 9]).
These authors have designed a generator of instances of the min cost multicom-
modity flow problem with step increasing link cost functions resembling to those
encountered in real telecommunication network design applications.

5.1. DATA

We have considered two cases of a network G = (V ,U) where V = {s1, ..., sm}
and U = {u1, ..., un} with m = 16, n = 25 in the first case and m = 42 and
n = 66 in the second one. The multicommodity flow circulating on these network
is composed of K simultaneous simple flows.

In our test problems, some of the basic characteristics of real problems have
been produced, in particular

• the number q(u) of discontinuity points is a random integer in [13, 15] (resp.
[3, 4]) for the first case(resp. the second case);

• for each u ∈ U , βu is, on average, equal to twice or three times a feasible flow
xu;

• the q(u) discontinuity points are randomly chosen in the range [0, βu];
• compute the cost γ i

u associated with each discontinuity point viu (i = 0, ..., q(u))
according to the formula

γ i+1
u = fu(v

i+1
u ) = max{a(vi+1

u )τ du, fu(v
i
u)+ C}, i = 0, ..., q(u) − 1,

where du is the distance (in kilometer) of link u, τ is a coefficient chosen in the
range [0.7, 1], a is a random number chosen in the range [E,F ]. The positive
numbers C,E and F will be precised in each test problem. In case 1, the distances
(in kilometers) between these nodes and the multicommodity flow requirements
between each node pair are taken from [8, 9].

In all our test problems the points ṽiu, i = 0, ..., q(u) − 1 (Subsection 4.1) are
defined as follows: for u ∈ U

ṽiu = viu − viu − vi−1
u

10
, i = 1, ..., q(u) − 1

and

ṽ0
u = v0

u + min{v
i
u − vi−1

u

10
: i = 1, ..., q(u) − 1}.

The first case (m = 16, n = 25) consists of three series of test problems
corresponding to different values of τ, C, E and F. Here K=120.

1. Test problems 1 (‘regular profile’) : [E,F ] = [0.9, 1], C = 4 and τ = 0.9
(case 1.1), 1 (case 1.2). The step increasing link cost functions have regular height
steps.
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2. Test problems 2 (‘irregular profile’) : [E,F ] = [0.9, 1.1], C = 2 and τ =
0.6 (case 2.1) , 0.7 (case 2.2), 0.8 (case 2.3), 0.9 (case 2.4), 1 (case 2.5). The step
increasing link cost functions have very irregular height steps.

3. Test problems 3 (‘concave profile’) : [E,F ] = [1, 1.1], C = 2 and τ = 0.6
(case 3.1), 0.7 (case 3.2), 0.8 (3.3), 0.9 (case 3.4), 1 (case 3.5). The step increasing
link cost functions may have a ‘concave profile’ that represents typically economies
of scales. Such cost functions make the problem strongly combinatorial.

The second case (m = 45, n = 62) deals with K = 113, 226, 452.

5.2. COMPUTATIONAL RESULTS

In our first series of tests problems we have used, instead of the convexified prob-
lem (18), the linearized problems (LP0).

To solve linear programs (LP)k+1 (computing the sequence {yk} generated by
DCA, see 4.3.2) and the linearized problem (LP0) we have used CPLEX library
subroutines.

For each example solved, Tables 1 and 2 show:
m: number of nodes in the network, n: number of links;
NV : number of x variables in (LP)k;
NC: number of constraints in (LP)k;
ND: average of number of discontinuity points of functions fu(xu),∀u ∈ U ;
LB: lower bound obtained by solving the linearized problem (LP0), i.e., l(x)+

L where x is the optimal solution to (LP0) and L = ∑
uinU

Lu is an additional
value to compensate for a bad under-approximation of lu, u ∈ U in a neighborhood
of (xu);

P : number of iterations performed by DCA at the convergence;
r = f (xP )−LB

f (xP )
( %).

We have started DCA with different choices of initial points x0:
(i) x0 = 0, in this case x0 may not be feasible for (P0) and F(x0) could be

less than F( xP ). This fact does not evidently contradict the decade of the
sequence {F( xP )}. On the other hand xk must be feasible for k � 1 and
F( x1) > F( x2) > ... > F( xP ).

(ii) x0 is a feasible solution, here the optimal solution to the linearized problem
(LP0).

(iii) x0 = (x0
u)u∈U , where x0

u is randomly chosen in [0, βu] for each u ∈ U.

(iv) x0 = (x0
u)u∈U , where x0

u = βu for each u ∈ U.

Note that in the last two cases x0 may be infeasible.
Since the choice (i) is always better in all our test problems (P and f (xP ) are the
smallest compared with the other choices of x0), we will present only computa-
tional results with this choice.
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Table 1. The first case: m = 16, n = 25; (13 � ND � 15)

Test problems NV ×NC P LB f (xP ) r

K = 120

1.1 2281 × 6050 3 3089 3305 6.53

1.2 2281 × 6050 3 3089 3338 7.45

2.1 2283 × 6050 4 792 949 16.5

2.2 2283 × 6050 5 1239 1403 11.6

2.3 2283 × 6050 5 2060 2369 13

2.4 2283 × 6050 4 3344 3762 11

2.5 2283 × 6050 3 5417 5906 8.2

3.1 2283 × 6050 4 820 949 13.6

3.2 2283 × 6050 5 1294 1548 16.4

3.3 2283 × 6050 5 2112 2480 14.8

3.4 2283 × 6050 6 3400 3928 13.4

3.5 2283 × 6050 4 5797 6321 8.2

The quality of this choice can be explained by the fact: the link cost functions
fu(xu) being increasing, x0 = 0 should be the unique solution to (P0) if it was a
feasible multicommodity flow.

We have not given here the running time of DCA. It corresponds exactly to that
of solving P linear programs (LP)k : k = 1, .., P . An efficient solution of these
problems must take into account the following properties:

(i) the network block diagonal structure (17) of (LP)k allows exploiting sparsity,
(ii) post-optimization techniques may be used since Problems (LP)k, k =

1, ..., P differ only from the constraints (∗).

5.3. CONCLUSIONS

We have presented a new approach based on d.c. programming and DCA to solve
the multicommodity network optimization with step increasing cost functions. Pre-
liminary computational experiments (Tables 1 and 2) are presented on a series of
test problems with structures similar to those encountered in telecommunication
networks. They show that the d.c. approach and DCA provide feasible multicom-
modity flows x∗ such that r := f (x∗) − LB/f (x∗) lies in the range [4.2 %,
16.5 %] with an average of 11.5 %. It is clear that r may be better estimated
using better lower bounds LB. Meanwhile, to the best of our knowledge, that is
the first time so good upper bound have been obtained. These results have been
more or less expected since the d.c. approach have been successfully applied to
many and various classes of nonconvex nondifferentiable optimization problems,
especially for large scale settings where found local solutions are quite often global



230 LE THI HOAI AN AND PHAM DINH TAO

Table 2. The second case: m = 42, n = 66;
(3 � ND � 4).

K = 113

Profile NV ×NC P r

‘regular’ 5047 × 15049 5 4.21

‘irregular’ 5047 × 15049 5 13

‘concave’ 5047 × 15049 5 15

K = 226

Profile NV ×NC P r

‘regular’ 9855 × 29964 5 5.86

‘irregular’ 9855 × 29964 6 13.5

‘concave’ 9855 × 29964 5 15.5

K = 452

Profile NV ×NC P r

‘regular’ 19347 × 79796 5 5.25

‘irregular’ 19347 × 79796 5 14

‘concave’ 19347 × 79796 6 16

ones. It is worth noting that DCA is quite simple and inexpensive, in particular for
approximate polyhedral d.c. programs (Pdc) to (P0) it has finite convergence: in
these series of test problems the number of iterations performed by DCA at the
convergence P varies between 3 and 6 with an average of 4.6. Our d.c. approach
and DCA may then be applied to large scale multicommodity network optimization
problems.

To confirm globality of solutions computed by DCA or to improve them in the
negation we can combine DCA with branch and bound techniques. Our branching
procedure consists simply of subdivisions of the box D = @u∈U [0, βu] in smaller
ones Dk while the bounding procedure solves the linear programs (CP)k obtained
from (CP) in replacing D with Dk. The best current feasible multicommodity
flow w generated by branch and bound techniques will be the new starting point
for DCA if f (w) < f (x∗) (escaping procedure) and so on. Such a combination
may considerably reduce the differences of current upper bounds and lower bounds
to (P0) and may so allow globally solving large scale problems.

On the other hand we believe that our d.c. approach and DCA are efficient in the
solution of the (CA), (FA) and (CFA) problems beside usual relaxation techniques
(applied to large scale mixed integer programming problems like (P2)) which are
in general very expensive. These issues are currently under research.
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